Reconstitution of Cholesterol-Dependent Vaginolysin into Tethered Phospholipid Bilayers: Implications for Bioanalysis

نویسندگان

  • Rima Budvytyte
  • Milda Pleckaityte
  • Aurelija Zvirbliene
  • David J. Vanderah
  • Gintaras Valincius
چکیده

Functional reconstitution of the cholesterol-dependent cytolysin vaginolysin (VLY) from Gardnerella vaginalis into artificial tethered bilayer membranes (tBLMs) has been accomplished. The reconstitution of VLY was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the EIS parameters of the tBLMs upon exposure to VLY solutions were consistent with the formation of water-filled pores in the membranes. It was found that reconstitution of VLY is a strictly cholesterol-dependent, irreversible process. At a constant cholesterol concentration reconstitution of VLY occurred in a concentration-dependent manner, thus allowing the monitoring of VLY concentration and activity in vitro and opening possibilities for tBLM utilization in bioanalysis. EIS methodology allowed us to detect VLY down to 0.5 nM (28 ng/mL) concentration. Inactivation of VLY by certain amino acid substitutions led to noticeably lesser tBLM damage. Pre-incubation of VLY with the neutralizing monoclonal antibody 9B4 inactivated the VLY membrane damage in a concentration-dependent manner, while the non-neutralizing antibody 21A5 exhibited no effect. These findings demonstrate the biological relevance of the interaction between VLY and the tBLM. The membrane-damaging interaction between VLY and tBLM was observed in the absence of the human CD59 receptor, known to strongly facilitate the hemolytic activity of VLY. Taken together, our study demonstrates the applicability of tBLMs as a bioanalytical platform for the detection of the activity of VLY and possibly other cholesterol-dependent cytolysins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of tethered bilayers by phospholipid exchange with vesicles.

Phosphatidylcholine and cholesterol exchange between vesicles and planar tethered bilayer lipid membranes (tBLMs) was demonstrated from electrochemical impedance spectroscopy (EIS), fluorescence microscopy (FM), and neutron reflectometry (NR) data. Cholesterol is incorporated into the tBLMs, as determined by the functional reconstitution of the pore forming toxin α-hemolysin (EIS data), attaini...

متن کامل

Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air–Water Interface

CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion-channel activity of CLIC1...

متن کامل

Smooth muscle cholesterol enables BK β1 subunit-mediated channel inhibition and subsequent vasoconstriction evoked by alcohol.

OBJECTIVE Hypercholesterolemia and alcohol drinking constitute independent risk factors for cerebrovascular disease. Alcohol constricts cerebral arteries in several species, including humans. This action results from inhibition of voltage- and calcium-gated potassium channels (BK) in vascular smooth muscle cells (VSMC). BK activity is also modulated by membrane cholesterol. We investigated whet...

متن کامل

Transmembrane peptides influence the affinity of sterols for phospholipid bilayers.

Cholesterol is distributed unevenly between different cellular membrane compartments, and the cholesterol content increases from the inner bilayers toward the plasma membrane. It has been suggested that this cholesterol gradient is important in the sorting of transmembrane proteins. Cholesterol has also been to shown play an important role in lateral organization of eukaryotic cell membranes. I...

متن کامل

An Unrecognized Function of Cholesterol: Regulating the Mechanism Controlling Membrane Phospholipid Asymmetry.

An asymmetric distribution of phospholipids in the membrane bilayer is inseparable from physiological functions, including shape preservation and survival of erythrocytes, and by implication other cells. Aminophospholipids, notably phosphatidylserine (PS), are confined to the inner leaflet of the erythrocyte membrane lipid bilayer by the ATP-dependent flippase enzyme, ATP11C, counteracting the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013